BLUETON

Bluetooth se denomina al protocolo de comunicaciones diseñado especialmente para dispositivos de bajo consumo, con una cobertura baja y basados en transceptores de bajo coste.

Gracias a este protocolo, los dispositivos que lo implementan pueden comunicarse entre ellos cuando se encuentran dentro de su alcance. Las comunicaciones se realizan por radiofrecuencia de forma que los dispositivos no tienen por qué estar alineados, pueden incluso estar en habitaciones separadas si la potencia de transmisión lo permite.

La clasificación de los dispositivos Bluetooth como “Clase 1”, “Clase 2” o “Clase 3” es únicamente una referencia de la potencia de trasmisión del dispositivo, siendo totalmente compatibles los dispositivos de una clase con los de la otra.

Clase Potencia máxima permitida
(
mW)
Potencia máxima permitida
(
dBm)
Rango
(aproximado)
Clase 1 100 mW 20 dBm ~100 metros
Clase 2 2.5 mW 4 dBm ~10 metros
Clase 3 1 mW 0 dBm ~1 metro

Cabe mencionar que en la mayoría de los casos, la cobertura efectiva de un dispositivo de clase 2 se extiende cuando se conecta a un transceptor de clase 1. Esto es así gracias a la mayor sensibilidad y potencia de transmisión del dispositivo de clase 1. Es decir, la mayor potencia de transmisión del dispositivo de clase 1 permite que la señal llegue con energía suficiente hasta el de clase 2. Por otra parte la mayor sensibilidad del dispositivo de clase 1 permite recibir la señal del otro pese a ser más débil.

En cuanto al ancho de banda:

Versión Ancho de banda
Versión 1.2 1 Mbit/s
Versión 2.0 + EDR 3 Mbit/s
UWB Bluetooth
(propuesto)
53 – 480 Mbit/s

Perfiles Bluetooth

Artículo principal: Perfil Bluetooth

Para utilizar Bluetooth, un dispositivo debe implementar alguno de los perfiles Bluetooth. Estos definen el uso del canal Bluetooth.

Lista de aplicaciones

  • Conexión sin cables entre los celulares y equipos de manos libres y kit para vehículos.
  • Red inalámbrica en espacios reducidos donde no sea tan importante un ancho de banda grande.
  • Comunicación sin cables entre la computadora y dispositivos de entrada y salida. Mayormente impresora, teclado y mouse.
  • Transferencia de ficheros entre dispositivos vía OBEX.
  • Transferencia de fichas de contactos, citas y recordatorios entre dispositivos vía OBEX.
  • Reemplazo de la tradicional comunicación por cable entre equipos GPS y equipamiento médico.
  • Controles remotos (tradicionalmente dominado por el infrarrojo).
  • Enviar pequeñas publicidades desde anunciantes a dispositivos con Bluetooth. Un negocio podría enviar publicidad a teléfonos móviles cuyo Bluetooth (los que lo posean) estuviera activado al pasar cerca.
  • Las consolas Sony PlayStation 3 y Nintendo Wii incorporan Bluetooth, lo que les permite utilizar mandos inalámbricos.

Especificación y características

En 1994, Ericsson inició un estudio para investigar la viabilidad de una nueva interfaz de bajo costo y consumo para la interconexión vía radio (eliminando así cables) entre dispositivos como teléfonos móviles y otros accesorios. El estudio partía de un largo proyecto que investigaba unos multicomunicadores conectados a una red celular, hasta que se llegó a un enlace de radio de corto alcance, llamado MC link. Conforme este proyecto avanzaba se fue haciendo claro que éste tipo de enlace podía ser utilizado ampliamente en un gran número de aplicaciones, ya que tenía como principal virtud que se basaba en un chip de radio.

  • Bluetooth v.1.1
  • Bluetooth v.1.2
  • Bluetooth v.2.0
  • Bluetooth v.2.1
  • Bluetooth v.2.2 (mediados 2009)

La versión 1.2, a diferencia de la 1.1, provee una solución inalámbrica complementaria para co-existir Bluetooth y Wi-Fi en el espectro de los 2.4 GHz, sin interferencia entre ellos.

La versión 1.2 usa la técnica “Adaptive Frequency Hopping (AFH)”, que ejecuta una transmisión más eficiente y un cifrado más seguro. Para mejorar las experiencias de los usuarios, la V1.2 ofrece una calidad de voz (Voice Quality – Enhanced Voice Processing) con menor ruido ambiental, y provee una más rápida configuración de la comunicación con los otros dispositivos bluetooth dentro del rango del alcance, como pueden ser PDAs, HIDs (Human Interface Devices), computadoras portátiles, computadoras de escritorio, Headsets, impresoras y celulares.

La versión 2.0, creada para ser una especificación separada, principalmente incorpora la técnica “Enhanced Data Rate” (EDR) que le permite mejorar las velocidades de transmisión en hasta 3Mbps a la vez que intenta solucionar algunos errores de la especificación 1.2.

La versión 2.1, simplifica los pasos para crear la conexión entre dispositivos, además el consumo de potencia es 5 veces menor.

La version 2.2 aumenta considerablemente la velocidad de transferencia. La idea es que el nuevo Bluetooth trabaje con WiFi, de tal manera que sea posible lograr mayor velocidad en los smartphones.

Arquitectura Hardware

El hardware que compone el dispositivo Bluetooth está compuesto por dos partes:

  • un dispositivo de radio, encargado de modular y transmitir la señal
  • un controlador digital, compuesto por una CPU, por un procesador de señales digitales (DSP – Digital Signal Processor) llamado Link Controller (o controlador de Enlace) y de los interfaces con el dispositivo anfitrión.

El LC o Link Controller está encargado de hacer el procesamiento de la banda base y del manejo de los protocolos ARQ y FEC de capa física. Además, se encarga de las funciones de transferencia (tanto asíncrona como síncrona), codificación de Audio y cifrado de datos.

El CPU del dispositivo se encarga de atender las instrucciones relacionadas con Bluetooth del dispositivo anfitrión, para así simplificar su operación. Para ello, sobre el CPU corre un software denominado Link Manager que tiene la función de comunicarse con otros dispositivos por medio del protocolo LMP.

Entre las tareas realizadas por el LC y el Link Manager, destacan las siguientes: – Envío y Recepción de Datos. – Empaginamiento y Peticiones. – Determinación de Conexiones. – Autenticación. – Negociación y determinación de tipos de enlace. – Determinación del tipo de cuerpo de cada paquete. – Ubicación del dispositivo en modo sniff o hold.

Arquitectura de transporte de datos

Bluetooth siempre considera que el canal físico no es confiable de forma conservadora. Para asegurar la corrección en las transmisiones varios niveles se hacen responsables de distintas comprobaciones y acciones. BB realiza corrección de errores hacia delante y comprueba la integridad de las cabeceras y CRC, cuando es posible; también puede aplicar métodos basados en TTL. Sigue una estructura clásica de comunicación basada en confirmaciones y peticiones de retransmisión.

BB no puede asegurar la corrección de transmisiones grandes por sí solo, por lo que L2CAP incorpora mecanismos adicionales que permiten lograr los niveles de fiabilidad de las redes cableadas típicas. Las transmisiones por broadcast no pueden identificar un camino de vuelta al origen, por lo que no se pueden realizar peticiones de retransmisión; en su lugar se repite la transmisión varias veces, aunque esto no es suficiente como para considerarlas fiables.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: